Session: MESA-01-01 Artificial Intelligence and Emerging Technologies for Mechatronics and Embedded Systems
Paper Number: 68557
Start Time: August 17, 11:10 AM
68557 - A Contactless Classification Method for Early Detection of Nematodes Using Deep Neural Networks (DNNs) and TensorFlow
{Soil-borne plant-parasitic nematodes are microscopic, eel-like roundworms. The root-knot nematodes ({\em Meloidogyne} spp.) and root-lesion nematodes ({\em Pratylenchus vulnus}) are among the most damaging in California, which are difficult to control and can spread easily in soil on tools, boots, and infested plants. Root-knot nematodes can attack many different crops, including nut and fruit trees, usually cause unusual swellings, called galls, on affected plants' roots. It is not easy to recognize the infestations of these nematodes. For instance, researchers need to dig up walnut trees with symptoms, wash or gently tap the soil from the roots, and examine the roots for galls. The nematode extraction procedures, identification, and enumeration under a microscope are tedious and time-consuming. Therefore, in this article, the authors proposed to use a low-cost contactless radio frequency tridimensional sensor ``Walabot," and Deep Neural Networks (DNNs), to perform the early detection of nematodes in a walnut site. Radiofrequency reflectance of walnut leaves from different nematode infestation levels was measured. The hypothesis is that waveforms generated from walnut leaves can estimate the damage caused by nematodes. DNNs with TensorFlow were used to train and test the proposed method. Results showed that the Walabot predicted nematode infestation levels with an accuracy of 82\%, which showed great potentials for early detection of nematodes.}
Presenting Author: Haoyu Niu University of California Merced
Authors:
Haoyu Niu University of California MercedAndreas Westphal Kearney Agricultural Research and Extension Center
Yangquan Chen Univ of California Merced
A Contactless Classification Method for Early Detection of Nematodes Using Deep Neural Networks (DNNs) and TensorFlow
Paper Type
Technical Paper Publication